Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.456
Filtrar
1.
Clin Cancer Res ; 30(10): 2193-2205, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38592373

RESUMO

PURPOSE: TGFß signaling is implicated in the progression of most cancers, including esophageal adenocarcinoma (EAC). Emerging evidence indicates that TGFß signaling is a key factor in the development of resistance toward cancer therapy. EXPERIMENTAL DESIGN: In this study, we developed patient-derived organoids and patient-derived xenograft models of EAC and performed bioinformatics analysis combined with functional genetics to investigate the role of SMAD family member 3 (SMAD3) in EAC resistance to oxaliplatin. RESULTS: Chemotherapy nonresponding patients showed enrichment of SMAD3 gene expression when compared with responders. In a randomized patient-derived xenograft experiment, SMAD3 inhibition in combination with oxaliplatin effectively diminished tumor burden by impeding DNA repair. SMAD3 interacted directly with protein phosphatase 2A (PP2A), a key regulator of the DNA damage repair protein ataxia telangiectasia mutated (ATM). SMAD3 inhibition diminished ATM phosphorylation by enhancing the binding of PP2A to ATM, causing excessive levels of DNA damage. CONCLUSIONS: Our results identify SMAD3 as a promising therapeutic target for future combination strategies for the treatment of patients with EAC.


Assuntos
Adenocarcinoma , Proteínas Mutadas de Ataxia Telangiectasia , Reparo do DNA , Neoplasias Esofágicas , Oxaliplatina , Proteína Smad3 , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Proteína Smad3/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Reparo do DNA/efeitos dos fármacos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Camundongos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Transdução de Sinais/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Organoides/efeitos dos fármacos
2.
EMBO Rep ; 25(5): 2220-2238, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600345

RESUMO

Perturbation of protein phosphorylation represents an attractive approach to cancer treatment. Besides kinase inhibitors, protein phosphatase inhibitors have been shown to have anti-cancer activity. A prime example is the small molecule LB-100, an inhibitor of protein phosphatases 2A/5 (PP2A/PP5), enzymes that affect cellular physiology. LB-100 has proven effective in pre-clinical models in combination with immunotherapy, but the molecular underpinnings of this synergy remain understood poorly. We report here a sensitivity of the mRNA splicing machinery to phosphorylation changes in response to LB-100 in colorectal adenocarcinoma. We observe enrichment for differentially phosphorylated sites within cancer-critical splicing nodes of U2 snRNP, SRSF and hnRNP proteins. Altered phosphorylation endows LB-100-treated colorectal adenocarcinoma cells with differential splicing patterns. In PP2A-inhibited cells, over 1000 events of exon skipping and intron retention affect regulators of genomic integrity. Finally, we show that LB-100-evoked alternative splicing leads to neoantigens that are presented by MHC class 1 at the cell surface. Our findings provide a potential explanation for the pre-clinical and clinical observations that LB-100 sensitizes cancer cells to immune checkpoint blockade.


Assuntos
Neoplasias do Colo , Splicing de RNA , Humanos , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Splicing de RNA/efeitos dos fármacos , Fosforilação , Linhagem Celular Tumoral , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Processamento Alternativo , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Fatores de Processamento de Serina-Arginina/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Proteína Fosfatase 2/metabolismo , Inibidores Enzimáticos/farmacologia
3.
Environ Toxicol ; 39(6): 3612-3627, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38491812

RESUMO

Protein phosphatase 2A (PP2A), a heterotrimeric holoenzyme (scaffolding, catalytic, and regulatory subunits), regulates dephosphorylation for more than half of serine/threonine phosphosites and exhibits diverse cellular functions. Although several studies on natural products and miRNAs have emphasized their impacts on PP2A regulation, their connections lack systemic organization. Moreover, only part of the PP2A family has been investigated. This review focuses on the PP2A-modulating effects of natural products and miRNAs' interactions with potential PP2A targets in cancer and non-cancer cells. PP2A-modulating natural products and miRNAs were retrieved through a literature search. Utilizing the miRDB database, potential PP2A targets of these PP2A-modulating miRNAs for the whole set (17 members) of the PP2A family were retrieved. Finally, PP2A-modulating natural products and miRNAs were linked via a literature search. This review provides systemic directions for assessing natural products and miRNAs relating to the PP2A-modulating functions in cancer and disease treatments.


Assuntos
Produtos Biológicos , MicroRNAs , Neoplasias , Proteína Fosfatase 2 , MicroRNAs/metabolismo , MicroRNAs/genética , Proteína Fosfatase 2/metabolismo , Produtos Biológicos/farmacologia , Humanos , Neoplasias/genética , Neoplasias/tratamento farmacológico , Animais
4.
J Clin Invest ; 134(10)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502192

RESUMO

Clarkson disease, or monoclonal gammopathy-associated idiopathic systemic capillary leak syndrome (ISCLS), is a rare, relapsing-remitting disorder featuring the abrupt extravasation of fluids and proteins into peripheral tissues, which in turn leads to hypotensive shock, severe hemoconcentration, and hypoalbuminemia. The specific leakage factor(s) and pathways in ISCLS are unknown, and there is no effective treatment for acute flares. Here, we characterize an autonomous vascular endothelial defect in ISCLS that was recapitulated in patient-derived endothelial cells (ECs) in culture and in a mouse model of disease. ISCLS-derived ECs were functionally hyperresponsive to permeability-inducing factors like VEGF and histamine, in part due to increased endothelial nitric oxide synthase (eNOS) activity. eNOS blockade by administration of N(γ)-nitro-l-arginine methyl ester (l-NAME) ameliorated vascular leakage in an SJL/J mouse model of ISCLS induced by histamine or VEGF challenge. eNOS mislocalization and decreased protein phosphatase 2A (PP2A) expression may contribute to eNOS hyperactivation in ISCLS-derived ECs. Our findings provide mechanistic insights into microvascular barrier dysfunction in ISCLS and highlight a potential therapeutic approach.


Assuntos
Síndrome de Vazamento Capilar , Modelos Animais de Doenças , Óxido Nítrico Sintase Tipo III , Fator A de Crescimento do Endotélio Vascular , Animais , Óxido Nítrico Sintase Tipo III/metabolismo , Camundongos , Síndrome de Vazamento Capilar/metabolismo , Síndrome de Vazamento Capilar/patologia , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Histamina/metabolismo , Mediadores da Inflamação/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Masculino
5.
Biomed Pharmacother ; 173: 116398, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458011

RESUMO

Breast cancer has become the most prevalent malignancy worldwide; however, therapeutic efficacy is far from satisfactory. To alleviate the burden of this disease, it is imperative to discover novel mechanisms and treatment strategies. Protein phosphatase 2 A (PP2A) comprises a family of mammalian serine/threonine phosphatases that regulate many cellular processes. PP2A is dysregulated in several human diseases, including oncological pathologies, and plays a pivotal role in the initiation and progression of tumours. The role of PP2A as a tumour suppressor has been extensively studied, and its regulation can serve as a target for anticancer therapy. Recent studies have shown that PP2A is a tumour promotor. PP2A-mediated anticancer therapy may involve two opposing mechanisms: activation and inhibition. In general, the contradictory roles of PP2A should not be overlooked, and more work is needed to determine the molecular mechanism by which PP2A affects in tumours. In this review, the literature on the role of PP2A in tumours, especially in breast cancer, was analysed. This review describes relevant targets of breast cancer, such as cell cycle control, DNA damage responses, epidermal growth factor receptor, immune modulation and cell death resistance, which may lead to effective therapeutic strategies or influence drug development in breast cancer.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo
6.
Aging (Albany NY) ; 16(5): 4116-4137, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38441530

RESUMO

Cellular senescence is a permanent cell cycle arrest that can be triggered by both internal and external genotoxic stressors, such as telomere dysfunction and DNA damage. The execution of senescence is mainly by two pathways, p16/RB and p53/p21, which lead to CDK4/6 inhibition and RB activation to block cell cycle progression. While the regulation of p53/p21 signaling in response to DNA damage and other insults is well-defined, the regulation of the p16/RB pathway in response to various stressors remains poorly understood. Here, we report a novel function of PR55α, a regulatory subunit of PP2A Ser/Thr phosphatase, as a potent inhibitor of p16 expression and senescence induction by ionizing radiation (IR), such as γ-rays. The results show that ectopic PR55α expression in normal pancreatic cells inhibits p16 transcription, increases RB phosphorylation, and blocks IR-induced senescence. Conversely, PR55α-knockdown by shRNA in pancreatic cancer cells elevates p16 transcription, reduces RB phosphorylation, and triggers senescence induction after IR. Furthermore, this PR55α function in the regulation of p16 and senescence is p53-independent because it was unaffected by the mutational status of p53. Moreover, PR55α only affects p16 expression but not p14 (ARF) expression, which is also transcribed from the same CDKN2A locus but from an alternative promoter. In normal human tissues, levels of p16 and PR55α proteins were inversely correlated and mutually exclusive. Collectively, these results describe a novel function of PR55α/PP2A in blocking p16/RB signaling and IR-induced cellular senescence.


Assuntos
Proteína Fosfatase 2 , Proteína Supressora de Tumor p53 , Humanos , Senescência Celular/fisiologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteína Supressora de Tumor p14ARF/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo
7.
Int J Mol Sci ; 25(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38542160

RESUMO

Protein serine/threonine phosphatase 2A (PP2A) regulates diverse cellular processes via the formation of ~100 heterotrimeric holoenzymes. However, a scarcity of knowledge on substrate recognition by various PP2A holoenzymes has greatly prevented the deciphering of PP2A function in phosphorylation-mediated signaling in eukaryotes. The review summarized the contribution of B56 phosphorylation to PP2A-B56 function and proposed strategies for intervening B56 phosphorylation to treat diseases associated with PP2A-B56 dysfunction; it especially analyzed recent advancements in LxxIxEx B56-binding motifs that provide the molecular details of PP2A-B56 binding specificity and, on this basis, explored the emerging role of PP2A-B56 in the mitosis process, virus attack, and cancer development through LxxIxE motif-mediated PP2A-B56 targeting. This review provides theoretical support for discriminatingly targeting specific PP2A holoenzymes to guide PP2A activity against specific pathogenic drivers.


Assuntos
Proteína Fosfatase 2 , Transdução de Sinais , Fosforilação , Proteína Fosfatase 2/metabolismo , Ligação Proteica , Holoenzimas/metabolismo
8.
BMJ Open Diabetes Res Care ; 12(2)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38442987

RESUMO

INTRODUCTION: We previously reported the significant upregulation of eight circulating exosomal microRNAs (miRNAs) in patients with diabetic kidney disease (DKD). However, their specific roles and molecular mechanisms in the kidney remain unknown. Among the eight miRNAs, we evaluated the effects of miR-5010-5p on renal tubular epithelial cells under diabetic conditions in this study. RESEARCH DESIGN AND METHODS: We transfected the renal tubular epithelial cell line, HK-2, with an miR-5010-5p mimic using recombinant plasmids. The target gene of hsa-miR-5010-5p was identified using a dual-luciferase assay. Cell viability was assessed via the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. Moreover, mRNA and protein expression levels were determined via real-time PCR and western blotting, respectively. RESULTS: High glucose levels did not significantly affect the intracellular expression of miR-5010-5p in HK-2 cells. Transfection of the miR-5010-5p mimic caused no change in cell viability. However, miR-5010-5p-transfected HK-2 cells exhibited significantly decreased expression levels of inflammatory cytokines, such as the monocyte chemoattractant protein-1, interleukin-1ß, and tumor necrosis factor-ɑ, under high-glucose conditions. These changes were accompanied by the restored expression of phosphorylated AMP-activated protein kinase (AMPK) and decreased phosphorylation of nuclear factor-kappa B. Dual-luciferase assay revealed that miR-5010-5p targeted the gene, protein phosphatase 2 regulatory subunit B delta (PPP2R2D), a subunit of protein phosphatase 2A, which modulates AMPK phosphorylation. CONCLUSIONS: Our findings suggest that increased miR-5010-5p expression reduces high glucose-induced inflammatory responses in renal tubular epithelial cells via the regulation of the target gene, PPP2R2D, which modulates AMPK phosphorylation. Therefore, miR-5010-5p may be a promising therapeutic target for DKD.


Assuntos
Proteínas Quinases Ativadas por AMP , MicroRNAs , Proteína Fosfatase 2 , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Células Epiteliais , Glucose/metabolismo , Inflamação/metabolismo , Luciferases , MicroRNAs/metabolismo , Proteína Fosfatase 2/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais/patologia
9.
Biol Direct ; 19(1): 17, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409085

RESUMO

Bladder cancer (BC) is the fourth and tenth most common malignancy in men and women worldwide, respectively. The complexity of the molecular biological mechanism behind BC is a major contributor to the lack of effective treatment management of the disease. The development and genesis of BC are influenced by mitochondrial retrograde control and mitochondria-nuclear cross-talk. However, the role of mitochondrial-related genes in BC remains unclear. In this study, we analyzed TCGA datasets and identified 752 DE-MRGs in BC samples, including 313 down-regulated MRGs and 439 up-regulated MRGs. Then, the results of machine-learning screened four critical diagnostic genes, including GLRX2, NMT1, PPP2R2B and TRAF3IP3. Moreover, we analyzed their prognostic value and confirmed that only PPP2R2B was associated with clinical prognosis of BC patients and Cox regression assays validated that PPP2R2B expression was a distinct predictor of overall survival in BC patients. Them, we performed RT-PCR and found that PPP2R2B expression was distinctly decreased in BC specimens and cell lines. Functional experiments revealed that overexpression of PPP2R2B distinctly suppressed the proliferation, migration and invasion of BC cells via Wnt signaling pathway. In summary, these research findings offer potential molecular markers for the diagnosis and prognosis of BC, with the discovery of PPP2R2B particularly holding significant biological and clinical significance. This study provides valuable clues for future in-depth investigations into the molecular mechanisms of BC, as well as the development of new diagnostic markers and therapeutic targets.


Assuntos
Neoplasias da Bexiga Urinária , Via de Sinalização Wnt , Masculino , Humanos , Feminino , Via de Sinalização Wnt/genética , Linhagem Celular Tumoral , Biomarcadores , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo
10.
Acta Neuropathol ; 147(1): 41, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363426

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease which currently lacks effective treatments. Mutations in the RNA-binding protein FUS are a common cause of familial ALS, accounting for around 4% of the cases. Understanding the mechanisms by which mutant FUS becomes toxic to neurons can provide insight into the pathogenesis of both familial and sporadic ALS. We have previously observed that overexpression of wild-type or ALS-mutant FUS in Drosophila motor neurons is toxic, which allowed us to screen for novel genetic modifiers of the disease. Using a genome-wide screening approach, we identified Protein Phosphatase 2A (PP2A) and Glycogen Synthase Kinase 3 (GSK3) as novel modifiers of FUS-ALS. Loss of function or pharmacological inhibition of either protein rescued FUS-associated lethality in Drosophila. Consistent with a conserved role in disease pathogenesis, pharmacological inhibition of both proteins rescued disease-relevant phenotypes, including mitochondrial trafficking defects and neuromuscular junction failure, in patient iPSC-derived spinal motor neurons (iPSC-sMNs). In FUS-ALS flies, mice, and human iPSC-sMNs, we observed reduced GSK3 inhibitory phosphorylation, suggesting that FUS dysfunction results in GSK3 hyperactivity. Furthermore, we found that PP2A acts upstream of GSK3, affecting its inhibitory phosphorylation. GSK3 has previously been linked to kinesin-1 hyperphosphorylation. We observed this in both flies and iPSC-sMNs, and we rescued this hyperphosphorylation by inhibiting GSK3 or PP2A. Moreover, increasing the level of kinesin-1 expression in our Drosophila model strongly rescued toxicity, confirming the relevance of kinesin-1 hyperphosphorylation. Our data provide in vivo evidence that PP2A and GSK3 are disease modifiers, and reveal an unexplored mechanistic link between PP2A, GSK3, and kinesin-1, that may be central to the pathogenesis of FUS-ALS and sporadic forms of the disease.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/patologia , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Doenças Neurodegenerativas/patologia , Cinesinas/genética , Cinesinas/metabolismo , Neurônios Motores/metabolismo , Drosophila/genética , Drosophila/metabolismo , Mutação/genética
11.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339122

RESUMO

Alterations in angiogenic properties play a pivotal role in the manifestation and onset of various pathologies, including vascular diseases and cancer. Thrombospondin-1 (TSP1) protein is one of the master regulators of angiogenesis. This study unveils a novel aspect of TSP1 regulation through reversible phosphorylation. The silencing of the B55α regulatory subunit of protein phosphatase 2A (PP2A) in endothelial cells led to a significant decrease in TSP1 expression. Direct interaction between TSP1 and PP2A-B55α was confirmed via various methods. Truncated TSP1 constructs were employed to identify the phosphorylation site and the responsible kinase, ultimately pinpointing PKC as the enzyme phosphorylating TSP1 on Ser93. The biological effects of B55α-TSP1 interaction were also analyzed. B55α silencing not only counteracted the increase in TSP1 expression during wound closure but also prolonged wound closure time. Although B55α silenced cells initiated tube-like structures earlier than control cells, their spheroid formation was disrupted, leading to disintegration. Cells transfected with phosphomimic TSP1 S93D exhibited smaller spheroids and reduced effectiveness in tube formation, revealing insights into the effects of TSP1 phosphorylation on angiogenic properties. In this paper, we introduce a new regulatory mechanism of angiogenesis by reversible phosphorylation on TSP1 S93 by PKC and PP2A B55α.


Assuntos
Células Endoteliais , Proteína Fosfatase 2 , Angiogênese , Células Endoteliais/metabolismo , Fosforilação , Proteína Fosfatase 2/metabolismo , Processamento de Proteína Pós-Traducional , Trombospondina 1/genética , Trombospondina 1/metabolismo , Humanos
12.
Biochem Biophys Res Commun ; 692: 149148, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38043157

RESUMO

Protein phosphatase 2A (PP2A) is an essential serine/threonine protein phosphatase that belongs to the type2A protein phosphatase family with PP4 and PP6. PP2A functions as a trimeric holoenzyme, and the composition of the trimer is regulated by the methyl-esterification (methylation) of PP2A. Demethylation of PP2A is catalyzed by protein phosphatase methyl-esterase-1 (PME-1). Despite the physiological and pathophysiological importance of PME-1, the impact of changes in PME-1 expression on the transcriptome has not been reported. This study provides transcriptome data to gain a comprehensive understanding of the effects of PME-1 knockout on intracellular signaling of mouse embryonic fibroblasts. Our data showed that PME-1 suppresses inflammatory signaling, activates PI3K/Akt signaling, and promotes epithelial-mesenchymal transition.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Transição Epitelial-Mesenquimal/genética , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo
13.
Int J Biol Macromol ; 256(Pt 2): 128036, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37972829

RESUMO

Cotton is the most economically important natural fiber crop grown in more than sixty-five countries of the world. Fiber length is the main factor affecting fiber quality, but the existing main varieties are short in length and cannot suit the higher demands of the textile industry. It is necessary to discover functional genes that enable fiber length improvement in cotton through molecular breeding. In this study, overexpression of GhEB1C in Arabidopsis thaliana significantly promotes trichomes, tap roots, and root hairs elongation. The molecular regulation of GhEB1C involves its interactions with itself and GhB'ETA, and the function of GhEB1C regulation mainly depends on the two cysteine residues located at the C-terminal. In particular, the function activity of GhEB1C protein triggered with the regulation of protein phosphatase 2A, while silencing of GhEB1C in cotton significantly influenced the fiber protrusions and elongation mechanisms., Further, influenced the expression of MYB-bHLH-WD40 complex, brassinosteroids, and jasmonic acid-related genes, which showed that transcriptional regulation of GhEB1C is indispensable for cotton fiber formation and elongation processes. Our study analyzed the brief molecular mechanism of GhEB1C regulation. Further elucidated that GhEB1C can be a potential target gene to improve cotton fiber length through transgenic breeding.


Assuntos
Arabidopsis , Gossypium , Gossypium/genética , Gossypium/metabolismo , Proteína Fosfatase 2/metabolismo , Melhoramento Vegetal , Fibra de Algodão , Arabidopsis/genética , Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Toxicol Appl Pharmacol ; 482: 116766, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37995808

RESUMO

Pleckstrin homology domain and leucine rich repeat protein phosphatase 2 (PHLPP2) is an emerging player in diverse disorders. Our previous findings have documented that reducing PHLPP2 levels in cultured retinal ganglion cells protects against cellular damage caused by high glucose, indicating a possible link between PHLPP2 and diabetic retinopathy (DR). The present work was dedicated to the investigation of PHLPP2 in DR through in vivo experiments with rat models induced by intraperitoneal injection of streptozotocin. Compared to normal rats, the retinas of rats with DR exhibited a notable increase in the level of PHLPP2. The reduction of PHLPP2 levels in the retina was achieved by the intravitreal administration of adeno-associated viruses expressing specific shRNA targeting PHLPP2. Decreasing the expression of PHLPP2 ameliorated visual function impairment and improved the pathological changes of retina in DR rats. Moreover, decreasing the expression of PHLPP2 repressed the apoptosis, oxidative stress and proinflammatory response in the retinas of rats with DR. Reduction of PHLPP2 levels led to an increase in the levels of phosphorylated AKT and glycogen synthase kinase-3ß (GSK-3ß). Decreasing the expression of PHLPP2 resulted in increased activation of nuclear factor erythroid 2-related factor 2 (Nrf2), which was reversed by suppressing AKT. Notably, the protective effect of reducing PHLPP2 on DR was eliminated when Nrf2 was restrained. These observations show that the down-regulation of PHLPP2 has protective effects on DR by preserving the structure and function of the retina by regulating the AKT-GSK-3ß-Nrf2 signal cascade. Therefore, targeting PHLPP2 may hold promise in the treatment of DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Fosfatase 2/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Transdução de Sinais , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Retinopatia Diabética/genética , Proteínas de Repetições Ricas em Leucina , Estresse Oxidativo , Transtornos da Visão
15.
J Clin Invest ; 134(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37934606

RESUMO

Mutations in the BRCA2 tumor suppressor gene have been associated with an increased risk of developing prostate cancer. One of the paradoxes concerning BRCA2 is the fact that its inactivation affects genetic stability and is deleterious for cellular and organismal survival, while BRCA2-mutated cancer cells adapt to this detriment and malignantly proliferate. Therapeutic strategies for tumors arising from BRCA2 mutations may be discovered by understanding these adaptive mechanisms. In this study, we conducted forward genetic synthetic viability screenings in Caenorhabditis elegans brc-2 (Cebrc-2) mutants and found that Ceubxn-2 inactivation rescued the viability of Cebrc-2 mutants. Moreover, loss of NSFL1C, the mammalian ortholog of CeUBXN-2, suppressed the spindle assembly checkpoint (SAC) activation and promoted the survival of BRCA2-deficient cells. Mechanistically, NSFL1C recruited USP9X to inhibit the polyubiquitination of AURKB and reduce the removal of AURKB from the centromeres by VCP, which is essential for SAC activation. SAC inactivation is common in BRCA2-deficient prostate cancer patients, but PP2A inhibitors could reactivate the SAC and achieve BRCA2-deficient prostate tumor synthetic lethality. Our research reveals the survival adaptation mechanism of BRCA2-deficient prostate tumor cells and provides different angles for exploring synthetic lethal inhibitors in addition to targeting DNA damage repair pathways.


Assuntos
Neoplasias da Próstata , Mutações Sintéticas Letais , Animais , Humanos , Masculino , Proteína BRCA2 , Caenorhabditis elegans/genética , Pontos de Checagem da Fase M do Ciclo Celular/genética , Mamíferos/metabolismo , Mutação , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Ubiquitina Tiolesterase/genética , Proteína Fosfatase 2/metabolismo
16.
J Biol Chem ; 300(1): 105584, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141761

RESUMO

Protein phosphatase 2A (PP2A) is an essential tumor suppressor, with its activity often hindered in cancer cells by endogenous PP2A inhibitory proteins like SE translocation (SET). SET/PP2A axis plays a pivotal role in the colony-formation ability of cancer cells and the stabilization of c-Myc and E2F1 proteins implicated in this process. However, in osteosarcoma cell line HOS, SET knock-down (KD) suppresses the colony-formation ability without affecting c-Myc and E2F1. This study aimed to unravel the molecular mechanism through which SET enhances the colony-formation ability of HOS cells and determine if it is generalized to other cancer cells. Transcriptome analysis unveiled that SET KD suppressed mTORC1 signaling. SET KD inhibited Akt phosphorylation, an upstream kinase for mTORC1. PP2A inhibitor blocked SET KD-mediated decrease in phosphorylation of Akt and a mTORC1 substrate p70S6K. A constitutively active Akt restored decreased colony-formation ability by SET KD, indicating the SET/PP2A/Akt/mTORC1 axis. Additionally, enrichment analysis highlighted that Bmi-1, a polycomb group protein, is affected by SET KD. SET KD decreased Bmi-1 protein by Akt inhibition but not by mTORC1 inhibition, and exogenous Bmi-1 expression rescued the reduced colony formation by SET KD. Four out of eight cancer cell lines exhibited decreased Bmi-1 by SET KD. Further analysis of these cell lines revealed that Myc activity plays a role in SET KD-mediated Bmi-1 degradation. These findings provide new insights into the molecular mechanism of SET-regulated colony-formation ability, which involved Akt-mediated activation of mTORC1/p70S6K and Bmi-1 signaling.


Assuntos
Proteínas de Ligação a DNA , Inibidores Enzimáticos , Chaperonas de Histonas , Alvo Mecanístico do Complexo 1 de Rapamicina , Neoplasias , Complexo Repressor Polycomb 1 , Proteína Fosfatase 2 , Proteínas Proto-Oncogênicas c-akt , Humanos , Inibidores Enzimáticos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação , Complexo Repressor Polycomb 1/metabolismo , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Chaperonas de Histonas/deficiência , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Transdução de Sinais , Ativação Enzimática , Linhagem Celular Tumoral
17.
Neoplasma ; 70(4): 485-499, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37789785

RESUMO

Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase considered a potent tumor suppressor that critically regulates diverse cellular processes, including cell cycle progression, apoptosis, or DNA repair. PP2A is typically downregulated in cancers but mechanisms for its inactivation in human cancers are poorly understood. PP2A represents a family of more than 60 phosphatases. According to cellular context, each heterotrimeric PP2A holoenzyme exerts a unique role in cancer, and PP2A isoforms can act either as tumor suppressors or as promoters. Due to wide structural diversity, PP2A has been considered undruggable. However, increasing knowledge predisposes PP2A diversity to therapeutical targeting for the treatment of a broad range of cancer pathologies, including drug resistance or cloaking immune surveillance. In this review, we discuss the regulatory role of PP2A in cancer, its regulation by microRNA and hypoxia, its contribution to therapy resistance development, and the therapeutic potential of direct and indirect targeting, or combinatory administration with other anti-cancer drugs to improve cancer treatment outcomes.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Neoplasias/genética , Antineoplásicos/uso terapêutico , Processamento de Proteína Pós-Traducional
18.
Oncogene ; 42(50): 3670-3683, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37891368

RESUMO

KMT2A-rearranged (KMT2A-R) is an aggressive and chemo-refractory acute leukemia which mostly affects children. Transcriptomics-based characterization and chemical interrogation identified kinases as key drivers of survival and drug resistance in KMT2A-R leukemia. In contrast, the contribution and regulation of phosphatases is unknown. In this study we uncover the essential role and underlying mechanisms of SET, the endogenous inhibitor of Ser/Thr phosphatase PP2A, in KMT2A-R-leukemia. Investigation of SET expression in acute myeloid leukemia (AML) samples demonstrated that SET is overexpressed, and elevated expression of SET is correlated with poor prognosis and with the expression of MEIS and HOXA genes in AML patients. Silencing SET specifically abolished the clonogenic ability of KMT2A-R leukemic cells and the transcription of KMT2A targets genes HOXA9 and HOXA10. Subsequent mechanistic investigations showed that SET interacts with both KMT2A wild type and fusion proteins, and it is recruited to the HOXA10 promoter. Pharmacological inhibition of SET by FTY720 disrupted SET-PP2A interaction leading to cell cycle arrest and increased sensitivity to chemotherapy in KMT2A-R-leukemic models. Phospho-proteomic analyses revealed that FTY720 reduced the activity of kinases regulated by PP2A, including ERK1, GSK3ß, AURB and PLK1 and led to suppression of MYC, supporting the hypothesis of a feedback loop among PP2A, AURB, PLK1, MYC, and SET. Our findings illustrate that SET is a novel player in KMT2A-R leukemia and they provide evidence that SET antagonism could serve as a novel strategy to treat this aggressive leukemia.


Assuntos
Cloridrato de Fingolimode , Leucemia Mieloide Aguda , Criança , Humanos , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Perfilação da Expressão Gênica , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteômica , Proteína Fosfatase 2/efeitos dos fármacos , Proteína Fosfatase 2/metabolismo
19.
Mov Disord ; 38(12): 2230-2240, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37735923

RESUMO

BACKGROUND: Spinocerebellar ataxia type 12 (SCA12) is a neurodegenerative disease caused by expansion of a CAG repeat in the PPP2R2B gene. OBJECTIVE: In this study, we tested the hypothesis that the PPP2R2B antisense (PPP2R2B-AS1) transcript containing a CUG repeat is expressed and contributes to SCA12 pathogenesis. METHODS: Expression of PPP2R2B-AS1 transcript was detected in SCA12 human induced pluripotent stem cells (iPSCs), iPSC-derived NGN2 neurons, and SCA12 knock-in mouse brains using strand-specific reverse transcription polymerase chain reaction. The tendency of expanded PPP2R2B-AS1 (expPPP2R2B-AS1) RNA to form foci, a marker of toxic processes involving mutant RNAs, was examined in SCA12 cell models by fluorescence in situ hybridization. The apoptotic effect of expPPP2R2B-AS1 transcripts on SK-N-MC neuroblastoma cells was evaluated by caspase 3/7 activity. Western blot was used to examine the expression of repeat associated non-ATG-initiated translation of expPPP2R2B-AS1 transcript in SK-N-MC cells. RESULTS: The repeat region in the PPP2R2B gene locus is bidirectionally transcribed in SCA12 iPSCs, iPSC-derived NGN2 neurons, and SCA12 mouse brains. Transfected expPPP2R2B-AS1 transcripts induce apoptosis in SK-N-MC cells, and the apoptotic effect may be mediated, at least in part, by the RNA secondary structure. The expPPP2R2B-AS1 transcripts form CUG RNA foci in SK-N-MC cells. expPPP2R2B-AS1 transcript is translated in the alanine open reading frame (ORF) via repeat-associated non-ATG translation, which is diminished by single-nucleotide interruptions within the CUG repeat and MBNL1 overexpression. CONCLUSIONS: These findings suggest that PPP2R2B-AS1 contributes to SCA12 pathogenesis and may therefore provide a novel therapeutic target for the disease. © 2023 International Parkinson and Movement Disorder Society.


Assuntos
Sequências Repetitivas de Aminoácidos , Ataxias Espinocerebelares , Transcrição Gênica , Células-Tronco Pluripotentes Induzidas , Neurônios/patologia , Apoptose/genética , Linhagem Celular , Sequências Repetitivas de Aminoácidos/genética , Proteínas de Ligação a RNA/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Técnicas de Introdução de Genes , Humanos , Animais , Camundongos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/fisiopatologia , RNA Antissenso/genética
20.
Neuropathol Appl Neurobiol ; 49(4): e12931, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37565253

RESUMO

BACKGROUND: Reduced folate status and elevated levels of circulating homocysteine are modifiable risk factors for cognitive decline and dementia. Disturbances in one-carbon metabolism are associated with the pathological accumulation of phosphorylated tau, a hallmark feature of prevalent dementia, including Alzheimer's disease and subgroups of frontotemporal dementia. METHODS: Here, using transgenic TAU58/2 mouse models of human tauopathy, we tested whether dietary supplementation with L-methylfolate (the active folate form), choline and betaine can reduce tau phosphorylation and associated behavioural phenotypes. RESULTS: TAU58/2 mice fed with the methyl donor-enriched diet showed reduced phosphorylation of tau at the pathological S202 (CP13) and S396/S404 (PHF-1) epitopes and alleviation of associated motor and learning deficits. Compared with mice on the control diet, the decrease in cortical phosphorylated tau levels in mice fed with the methyl donor-enriched diet was associated with enhanced methylation of protein phosphatase 2A, the major brain tau Ser/Thr phosphatase. It also correlated with a reduction in protein levels of Fyn, a tau tyrosine kinase that plays a central role in mediating pathological tau-induced neurodegeneration. Conversely, Fyn expression levels were increased in mice with deficiencies in folate metabolism. CONCLUSIONS: Our findings provide the first experimental evidence that boosting one-carbon metabolism with L-methylfolate, choline and betaine can mitigate key pathological, learning and motor deficits in a tauopathy mouse model. They give support to using a combination of methyl donors as a preventive or disease-modifying strategy for tauopathies.


Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Humanos , Animais , Proteína Fosfatase 2/metabolismo , Proteínas tau/metabolismo , Betaína , Tauopatias/patologia , Camundongos Transgênicos , Doença de Alzheimer/metabolismo , Fosforilação , Modelos Animais de Doenças , Ácido Fólico , Colina , Suplementos Nutricionais , Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA